
SOLUTION OF THE SELF-SIMULATING PROBLEM OF HEAT AND 

MOISTURE TRANSFER DURING FREEZING OF DISPERSE SOILS 

P. A. Yanitskii UDC 536.421 

The article presents the construction of the self-simulating solution of the 
problem of freezing of disperse soils attended by migration of moisture in 
the melted and the frozen zones. The conditions are determined under which 
a freezing layer forms between them. A comparison of the theoretical data 
with the experimental ones shows qualitative coincidence. 

i. Introduction. It is known that the principal processes attending the freezing of 
moist soils are the phase transition of water and mass transfer, and that migration of water 
is found both in the melted and in the freezing zone. In addition to that, in many ex- 
periments it was ascertained that the front of macroscopic ice evolution lags noticeably 
behind the boundary of incipient freezing. The region between these boundaries is called 
freezing region in Soviet literature [i, 2], in foreign literature it is called the frozen 
fringe [3]. The formation of such a zone was observed in soils containing argillaceous 
particles (loams, clays), and the quantitative characteristics such as the size of this zone, 
the temperature and moisture content at the boundaries of the onset and completion of the 
phase transition of the moisture depend on internal parameters of the soil as well as on the 
external conditions of freezing. In particular, when the initial moisture content of the 
soil is high, this layer is noticeably smaller, the moisture at the boundary of freezing in- 
creases with increasing cooling rate, etc. Ice does not form on the boundary of ice evolu- 
tion alone but also inside the freezing zone in which the total moisture content noticeably 
decreases, attaining its minimum on the boundary of ice evolution. 

The mathematical model of the process of freezing of disperse soils has to describe all 
these phenomena. The authors of [4-6] investigated them on the basis of a single mathema- 
tical model describing conductive heat transfer: moisture transfer in the melted and freezing 
zones; phase transition in a broad temperature range; relaxation effects of the processes of 
crystallization of moisture and of ice melting. An analysis of the solutions obtained with 
the aid of the finite difference method showed that the suggested method of calculation 
yields results close to the experimental ones. 

The present article describes the self-simulating solution that takes the first three of 
the above-mentioned processes into account. It should be noted that the existing self- 
simulating solutions (see, e.g., [7, 8]) were derived on the assumption that there is no mois- 
ture transfer in the freezing zone, and that the moisture content on the boundary between 
the melted and the frozen zones is a constant that was previously specified. The discrepancy 
between the solutions thus obtained and the experimental data described in a number of publi- 
cations (see, e.g., [2, 9]) are apparently due to the artificial separation of the melted 
from the frozen zones. Below, it will be shown that when the existence of an intermediate 
zone is taken into account, good agreement with the experiments is attained. The suggested 
model assumes that in the melted and frozen zones the same mechanism of moisture transfer 
acts. The phenomenological model is general, and in the unidimensional case it has the form 
q = -k 8w/Sx [6]. It follows from this relation that the migration of moisture is directed 
to the side of lower temperatures (see Fig. 1 where curve 1 represents the dependence of the 
content of nonfrozen water on the temperature for finely disperse soils). In constructing 
the self-simulating solution the piecewise linear approximation of this dependence (curve 2) 
is used. 
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Fig. 2 
Fig. i. Dependence of the equilibrium content of nonfrozen water 
on the temperature: i) characteristic curve of finely dispersed 
soils; 2) approximation of curve i. The reference point on the 
axis of abscissas is not 0 but T x. 

Fig. 2. Distribution of moisture content W (I) and of summary 
moisture W s (2) along the freezing soil sample. 

It is known that the heat and mass transfer coefficients of soils depend largely on 
parameters such as temperature, moisture content, iciness. For instance, the diffusion co- 
efficient of moisture k increases with increasing moisture content W, and for the different 
W the values of k may differ from each other by 1-2 orders of magnitude. In the suggested 
model this is taken into account by assigning in each of the three zones individual values 
of ~, c, k, differing from each other. In addition, we use some relations satisfied by the 
heat and mass transfer coefficients of real soils [7]. Denoting with the subscripts i, 2, 3 
the frozen, the freezing, and the melted zone, respectively, we can write the following ine- 
qualities: 

~ < ~ = ,  k 2 < k 3 ,  a2<~,  k3<a3. ( i )  
2. Mathematical Statement of the Problem. In self-simulating statement the unidimen- 

sional problem of the freezing of disperse soils of Stefan type is formulated as follows. 
Initially the medium has uniform temperature T O and moisture content W 0. At the instant t = 
0 the temperature T x < 0~ is established. The entire investigated region x > 0 is divided 
into three zones: the frozen zone (a), the freezing zone (b), and the melted zone (c) 
( F i g .  2).  

In the first zone 0 < x < sl(t) 

OT___L = OTx 
Ot a l - - ,  W~= ~ -  OxZ 

in the second zone sl(t) < x < s2(t) 

AW 
OT~ O'T2 W2 = WodT~) = (T2 - -  T c) ~ + We; 
at = a~ Ox---- 7 ,  

i n  t h e  t h i r d  zone  s = ( t )  < x < 

_ _  O~Ta OWa O~W3 OT~ -- a ~ - - ,  ~ ka 
Ot Ox" Ot Ox" 

Here, 

(2) 

(3)  

(4) 

~,= +ks• 
a, = ~1/cl, a2 = , aa = ~.3/ca. ( 5 )  

c2 + x p A W / A T  

The coefficient a 2 in (3), (5) is determined in the following way. Conductive heat transfer, 
migration of moisture, and phase transition of water in the freezing zone are described by 
the relations 

OT~ = %~ O2T2 OL~ OW~ o G  a~w~ 
at ~ + • - -  ' + - -  k~ - at at at Ox ~ 
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Fig. 3. Correlation between the 
coefficients gl, ~2 satisfying: i) 
Eq. (17) when condition (20) is 
fulfilled; 2) (17) with (21) ful- 
filled; 3) (17) with (22) fulfilled; 
4) (16) when ~i* > ~2"; 5) (16) when 
~* < ~*. 

Since 3Wi/St = AW/AT 8Ti/St, the elimination of 8Li/St yields 

= Ox~ 

At the movable boundaries sl, s 2 we specify the conditions of continuity of the function 
of temperature and moisture content, and also of conserving the balances of heat and moisture 
content. 

On 

s l - -  T I = T ~ = T c  W i = W  e ,. ( 6 )  

[%OT/Oxh -t- • [feOW /Oxh = O, ( 7 ) 

On 
v~ [W,]I + [kOW/Oxh -- O, vl - dsl/dt. 

s i - -  T i =  T a =  T ,  W i =  W a =  Wo~(T,), 

[~.OT/Oxl~ + • [kOW/Oxl,. = O, 

v2 [V/~]2 + [kOW/Ox]2 -- O, v, = ds.jdt. 

(8) 

(9) 
(lO) 

In addition to that, on the second boundary we specify that the moisture flows are con- 
tinuous, and then condition (I0) reduces to 

[~,OT/Ox]~ = O, [kOW/Ox]~ = 0. ( 1 1 )  

I f  we i n t r o d u c e  t h e  s e l f - s i m u l a t i n g  v a r i a b l e  n = x / 2 ~ / t  and  r e p r e s e n t  s 1, s 2 a s  s 1 = 
2g~ r  s 2 = 262 / ~ ,  t h e n  w i t h  a v i e w  t o  ( 2 ) - ( 6 ) ,  ( 9 ) ,  t h e  s o l u t i o n  o f  t h e  i n i t i a l  p r o b l e m  
is written in the form: 

Tr - -  T.,. err (ql-1/~)- }- T.~, W, = We; 
T1 = e r f ( ~ , / 3 / ~ )  

T2 = T ,  - -  T c [erf 0 I / V ~ ) - -  erf (~1/] /~)1  + To; 
[erf (~2/ ] /~)  - -  err (~1/]/~)1 

W~ = A W / A T ( T 2 -  Tc) q- I~, c ; ( 1 2 )  

Ta To ~ T ,  [err 01 /3 /~)  - -  er~ (P~/]/~a)] + T , ;  
erfc (~2/1/~) 

Wa = Wo - -  % n ( T , )  [erf ( q / ] / ~ )  - -  err (~2/3/~)1 -- N"oRT,). 
erfc (~e / ] /ka)  

The distribution profiles of the moisture content and of the summary moisture are pre- 
sented in Fig. 2. Conditions (7), (ii) are written in the form of ratios: 

1, ( r  c - -  T~) t2 (T, --- Te ) 
] / ~ ,  err i ~ i / ] / ~ )  exp ( - - ~ / ' a 0  = • ] / a ;  [err ( B i / 1 / ~ )  - -  err ( ~ 1 / ~ ) ]  exp ( - - ~ / a i )  , ( 1 3 )  

t,, ( T ,  - -  Tc) ;.a (To - -  T , )  exp (--~la~), 
] / ~  [err ( ~ I  ] / ~ )  - -  err (~1/3/~)1 exp ( - - ~ / a i )  = - l / ~  erfc ( 2 2 / Y ~ )  

(14) 
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Here, 

T,  - -  T c 
ks 3 / ~  [eft ([~J V ~ )  - -  erf ([~I/V~)] exp (--~/a~) = V ~  erfc (~2/~/~) 

exp (--~/k3). (15)  

k~• AW 
•  1~ 

%2 AT 

3. Criterion of Formation of the Freezing Zone. In deriving the last relations it was 
understood that the initial parameters are such that the entire domain of solutions is divi- 
ded into three parts. In fact, it is possible that a situation arises where an intermedi- 
ate layer does not form, and the frozen zone is in direct contact with the melted one. 
Below we will obtain a condition such that when it is fulfilled, three zones form, and when 
it is not fulfilled, there are only two zones. For that we have to regroup the separate 
expressions in (13)-(15): 

)~1 (To--  T~) --~ al a2 "1/~ erfc (gs/-I/~) a3 a2 ]/$erf([~l/]/~11) exp , ---- • , (16)  

err ([31/'V~) = err (~.~/V~) ~... V ~  F (~2) - -  Tr erfc (l$.J]/~), (.17) 

where 

F(~2) = T,  = T T o -  Tc , (18) 
r r  

erfc (132/V~) exp (figlas) )~s Vk3a3 
* = y , y - (19)  

erfc ([32/]/~) exp (~g/k3) ~k2 

Using the last inequality (i), we can easily show that $(~2)is a monotonically increas- 
ing function satisfying the condition: 

vg 
1 < ~ < , ( ~ ) < ~  V ~  " 

It follows from these inequalities and from (18) that F(~2) < T o . Figure 3 shows the 
correlation between ~i and ~2 plotted according to Eqs. (16), (17). The shape of these 
curves corresponds to the above relations because, in accordance with (i): 

a) the function 

F~ = erfc (~fW~)  

has a unique local minimum and tends to infinity for Bl + O, $i + ~; 

b) the functions 

I] F ~ =  erfc (13fV$) 73 as ' 

F3 erf 

are monotonically increasing with respect to ~2" 

If an intermediate freezing zone is to appear, the inequality T, > T k has to be ful- 
filled, or we have to obtain, in accordance with (17), the relation ~l < ~2- Let us consi- 
der the three cases: 

a) T o - - T ~ <  X2 Vk-~3 
T - -  T %3 ks ' (20)  

o n  r 

~ "l/k.-~3 To --Te ~2an 
o n  c 
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e) k2aa T~ 
s < Ten_ - Te .  (22)  

The s i m p l e s t  a r e  t h e  v a r i a n t s  a)  and c ) .  In  t h e  f i r s t  c a s e  t h e  i n t e r s e c t i o n  o f  c u r v e  1 
( F i g .  3) w i t h  c u r v e s  t y p e  4,  5 o c c u r s  a t  a u n i q u e  p o i n t  o f  t h e  r e g i o n  82 > 6a o r  T ,  > T k.  
T h i s  i s  t h e  e a s e  o f  t h r e e  z o n e s .  When (22)  i s  f u l f i l l e d ,  t h e  u n i q u e  r o o t  o f  t h e  s y s t e m  
( 1 6 ) ,  (17 )  i s  u n a m b i g u o u s l y  d e t e r m i n e d ,  and 61 > 62, T ,  < T k,  i . e . ,  t h r e e  zo n es  c a n n o t  form 
t h e n .  I n s t e a d  o f  two movab le  b o u n d a r i e s ,  one  f o r m s ,  s e p a r a t i n g  t h e  m e l t e d  f rom t h e  f r o z e n  
zone .  T h e  c o n d i t i o n s  on t h i s  b o u n d a r y  s = 26r a r e  w r i t t e n  i n  t h e  f o l l o w i n g  way: 

T I = T a = T  c W I = W a = W  c, 

Zl T c -- Tx Za To --YT-- exp(--~2/aa) + ] /~xpAW exp ( -  ~F'/ka) 
1 / ~  er[ (~ /1 /~)  exp (--~2/a 0 ]/~a erfc (~/Vaa) . . . .  erfc (~/]/ka) (23)  

The l e f t - h a n d  s i d e  i s  a f u n c t i o n  d e c r e a s i n g  w i t h  r e s p e c t  t o  6, t h e  r i g h t - h a n d  s i d e  i s  i n -  
c r e a s i n g ;  Eq. (23 )  t h e r e f o r e  has  a u n i q u e  r o o t .  The g r e a t e s t  c o m p l i c a t i o n  i s  e n c o u n t e r e d  
in  t h e  c a s e  o f  b ) .  Here  two v a r i a n t s  a r e  p o s s i b l e :  61" X 62" ,  where  61" i s  t h e  c o o r d i n a t e  

on the 62 axis of the point of intersection of curve (16) with the bisector 61 = 6=, 62 ~'~ is 
the coordinate on the ~2-axis of the intersection of curve (17) with 81 = B2 (Fig. 3). 
When the condition ~i* > 62" is fulfilled, three zones form, when 61" < ~2", there is no 
freezing layer. In the last variant the coefficient $ is again found from relation (23). 

4. Analysis of the Obtained Solution. In accordance with (3), (12) the summary mois- 
ture in the intermediate layer is calculated in the following way: 

t t 

Ws(x, t)= ~ OWdOtdt + Wo~T,)= 5 te= O=W= dt + Won(T, ) = 
t ,  t ,  OX z 

i o2Ts" dt + ~on(T,) k, AW f 0T, dt -~ ~on(T,) l~ 2 AW (T , - -  T,)3C Won(T,). AW 

= k 2 - - ~ t ,  Ox2 a~ AT t,' Ot a2 A---~ " 

Here, t, is the instant at which at the given point x the soil temperature attains the value 
T,, after which the phase transition from water to ice begins. It should be noted that in 
the last expression the sign of the first term is negative, i.e., in the freezing zone (the 
same as in the melted one) the summary moisture decreases in the 'direction of the frozen 
zone (see Fig. 2). The jump of W s occurs at the boundary s~. The value of the summary mois- 
ture in the frozen zone W s is a constant and is determined in the following way: 

Ws ~ _ k~ A__W_W (T c _ T, )  + W o n ( T , ) -  [Wsh, 
a 2 AT 

whereWon(T,) is determined from (3), and 

k, AW exp (--~,2/c@ 
[Wsh = ]/~-ad~, AT (T,  - -  T ) c [err (~, /1/~) - -  err (Pal 1/~)]  

{_ } w ]  = A V  (7", - -  1 + We" 

The summary m o i s t u r e  on t h e  b o u n d a r y  s 1 a f t e r  f r a c t u r e  (Ws 2) and on s2(Ws s )  ( F i g .  2) i s  de -  
t e r m i n e d :  

�9 l-k a, ) + w:= A--K  (r ,_rc)+Ar 
When o n l y  two zones  fo rm,  t h e  f u n c t i o n  W s has  a jump a t  t h e  p o i n t  s = 2 6 ~ ,  and t h e n  

Wi_Wa=Wr W~ ] / ~ A W  exp(--[82/ka) 
~-- ~ " ~ =  -I/~/[~ eric ([8/]/Ka) ~- We., 

where 6 is the root of Eq. (23). 

5 Comparison of the Obtained Solution with the Experimental Data. As shown above, the 
effect of formation of an intermediate layer was noted experimentally only in soils that con- 
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Fig. 4. Dependence of the coefficients $I, B: on 
AW, kg/kg (a); Tx, ~ (b): a) k: = 5.5"i0 -s m:/ 
sec, k s = 2.8"10 -s m=/sec; i) T o = 3~ T x = - 
IO~ 2) T o = 5~ T x = -6~ b) k 2 = 5.5"10 -9 
m2/sec, k3 = 1.7"I0 -s m2/sec, AT = 1.70C; i) T o = 
I~ 2) T o = 3~ 

tained a sufficient amount of clayey particles. Their increase leads to a decrease of k 2 
and an increase of AT [i, 2]. It can be seen from (20) that with other conditions being 
equal, such a change of k 2 and AT leads to a more probable formation of three zones. Conver- 
sely, upon transition to coarsely disperse soils, e.g., sands, k 2 increases, AT + O, i.e., 
according to (20) the freezing zone is bound to vanish. In a number of publications (e.g., 
[2]) it was noted that this zone becomes narrower when the initial moisture content of the 
specimens increases. Figure 4 presents the dependence of the coefficients ~i, ~2 on AW ob- 
tained in accordance with the suggested solution (61, ~2 are denoted by a dashed and a solid 
line, respectively). The difference A~ = ~2 -- ~l, characterizing the thickness of the freezing 
layer, decreases with increasing AWo the same as in the experiments. In the same book it 
was shown that when the cooling temperature T x is higher (softening of the freezing regime), 
the freezing zone becomes wider. It can also be seen from the theoretical dependences (Fig. 
4b) that with higher T x the value of A~ increases. A comparison of the theoretical depen- 
dences of moisture content at the boundary of freezing Wi(s 2) on some parameters with the 
experimental data [9] showed that here there is complete coincidence at the qualitative 
level: a) increase of W i when W 0 increases; b) increase of W i when T x increases; c) W i is 
constant in the process of each actual experiment. In all the calculations the following 
values of the initial parameters were adopted: ~ = 335 kJ/kg, p = 1500 kgim ~, % I = % 2 = I s = 
1.03 W/(m'deg), c~ = c: = c 3 = 1745 kJ/(m3"deg). 

On the whole, the analysis of the presented results enables us to assert that the sug- 
gested self-simulating solution describes fairly accurately the change of phase composition 
and the migration processes accompanying the freezing of disperse soils. 

NOTATION 

a, thermal diffusivity of the soil, m=/sec; [A]i, difference between the values of A 
ahead of the i-th boundary and behind it; vi, speed of migration of the i-th boundary, i = i, 
2; c, heat capacity of the soil, J/(mS'deg); k, diffusion coefficient of the moisture, m2/sec; 
L, iciness of the soil, kg/kg; s=, sl, coordinates of the boundary of the beginning and end 
of the phase transition of the moisture, m; t, time, sec; T, soil temperature, ~ T,, tem- 
perature at the mobile boundary separating the freezing from the melted zone, ~ T n, tem- 
perature of the beginning of the phase transition of the moisture in the soil, ~ W, mois- 
ture content, kg/kg; Wk, moisture content of the frozen zone, kg/kg; W0, initial moisture 
content, kg/kg; Ws, summary moisture, kg/kg; Wi, moisture content at the boundary of freez- 
ing, kg/kg; Wn(T) , dependence of the equilibrium content of nonfrozen water on the temper- 
ature, kg/kg; x, spatial coordinate, m; ~i, $2, coefficients characterizing the speed of 
migration of the boundaries sl, s=, respectively, m/secl/2; AT = T n - Tk; AW = W 0 - Wk; K, 
latent heat of the phase transition water-ice, J/kg; i, thermal conductivity of the soil, 
W/(m-deg); p, volumetric mass of the soil skeleton, kg/m3; li, ci, ai, ki, thermal conduc- 
tivity, W/(m'deg), heat capacity, J/(m3"deg), thermal diffusivity, m=/sec, diffusion co- 
efficient, m=/sec, respectively, of the moisture in the i-th zone, i = i, 2, 3; T k, temper- 
ature of the conclusion of the phase transition of the moisture in the soil, ~ 

LITERATURE CITED 

i. E. D. Ershov, Moisture Transport and Cryogenic Textures in Disperse Soils [in Russian], 
Moscow (1979). 

1343 



2. S. E. Grechinshchev, L. V. Chistotinov, and Yu. L. Shur, Cryogenic Physicomechanical 
Geological Processes and Their Prediction [in Russian], Moscow (1980). 

3. J. M. Konrad, Can. Geotech. J., 21, 100-115 (1984). 
4. Yu. S. Dani~lyan and P. A. Yanitskii, Inzh.-Fiz. Zh., 44, No. I, 91-98 (1983). 
5. I. I. Nesterov, Yu. S. Dani~lyan, P. A. Yanitskii, and V. N. Galieva, Dokl. Akad. Nauk 

SSSR, 277, No. 4, 928-932 (1984). 
6. Yu. S. Dani41yan, P. A. Yanitskii, V. G. Cheverev, and Yu. P. Lebedenko, Inzh. Geol., 

No. 3. 77-83 (1983). 
7. V. A. Kudryavtsev (ed.), General Geocryology [in Russian], Moscow (1978). 
8. M. Bouls and M. Ezishek, Teploperedacha, 105, No. 2, 161-163 (1983). 
9. T. N. Zhestkova, The Formation of the Cryogenic Structure of Soils [in Russian], Moscow 

(1982). 

THE COOLING OF A SALT SOLUTION 

V. M. Entov and A. M. Maksimov UDC 532.78:536.42 

Self-similar formulation is used to demonstrate the possibility of a regime 
involving formation of a zone with two-phase state. The boundary is found 
between crystallization regimes with abrupt phase transition front and with 
extended mixture zone. 

We will consider a generalization of the classical Stefan problem (see, for example, [i, 
2]) of one-dimensional passage of a planar crystallization front through a cooled liquid. 
We will assume that in the liquid (water) there is dissolved a small quantity of material 
(salt) which does not enter the solid phase upon crystallization. Since the dissolved 
material decreases the phase transition temperature and is retained in the liquid phase upon 
crystallization, it is necessary to solve a mixed thermodiffusion problem, similar to that 
of crystallization of a binary alloy [2, 3]. As is well known, analysis of the self-similar 
solution [3] has shown that it becomes physically absurd at some parameter range, since in 
the melt zone ahead of the phase transition front the temperature of the melt proves to be 
lower than the local crystallization temperature. This occurs because for a sufficiently 
small diffusion coefficient the concentration ahead of the front decreases very rapidly and 
the corresponding phase transition temperature increases with removal from the front more ra- 
pidly than the local temperature. This effect has been termed "diffusion" supercooling [3]. 
To construct a solution free of this shortcoming the concept and model of a two-phase zone 
was introduced, which on the average describes crystallization with formation of dendrites 
in the case of supercooling [4, 5]. This model, well known in metallurgy, has apparently 
not been applied to freezing processes in salt solutions, in particular, to freezing of 
soil moisture. Meanwhile, formation of a two-phase zone here can lead to significant quanti- 
tative and even qualitative effects. The goal of the present study is the formulation of a 
corresponding mathematical model and determination of the boundaries of problem parameters 
separating qualitatively different freezing regimes. 

The fact that the classical "Stefan" regime may not be realizable is illustrated by Fig. 
i, which gives an example of calculation of the self-similar solution of the problem of freez- 
ing of an aqueous solution of NaCI assuming the presence of a phase transition front. It is 
clear that supercooling of the solution ahead of the freezing front occurs. We will now 
assume that between the impurity-free ice and the liquid solution there exists an inter- 
mediate zone with a two-phase state, in which ice and the solution coexist in a state of 
local thermodynamic equilibrium, so that their temperatures are equal to each other and the 
phase transition temperature for the local value of the salt concentration in the solution. 
Such behavior has been observed in experiment [6], although it has been calculated only with 
neglect of salt diffusion. 
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